Abstract

Endometrial endometrioid adenocarcinoma (EEA) is conventionally considered to be a single pathologic entity that develops through a hyperplasia-carcinoma sequence under the influence of estrogen. Previously, another EEA subtype was described and proposed to arise directly from normal endometrium. These conventional and de novo subtypes are designated groups 1 and 2, respectively. To identify the molecular mechanisms of these distinct tumorigenic processes, we conducted comprehensive integrated analyses of genomic data with hormonal status for group 1 paired carcinoma and hyperplasia and group 2 carcinoma samples. Although group 1 carcinomas mostly exhibited genomically stable characteristics and the activation of estrogen signaling, group 2 EEAs showed enriched hypermutator and CpG island methylator phenotypes. Pairwise comparisons of hyperplasia and carcinoma, along with time-course analyses of the hyperplasia-carcinoma sequence, revealed the acquisition of driver mutations in the evolutionary process of hyperplasia but not in the transition from hyperplasia to carcinoma. The current study confirms the existence of two different histopathologic programs during EEA development thatharbor distinct molecular bases and demonstrates the biological relevance of these differential tumorigenic processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.