Abstract
The subretina, composed of the choroid and the retinal pigment epithelium (RPE), plays a critical role in proper vision. In addition to phagocytosis of photoreceptor debris, the RPE shuttles oxygen and nutrients to the neuroretina. For their own energy production, RPE cells mainly rely on lactate, a major by-product of glycolysis. Lactate, in turn, conveys most of its biological effects via the hydroxycarboxylic acid receptor 1 (HCAR1). Herein, the lactate-specific receptor, HCAR1, was found to be exclusively expressed in the RPE cells within the subretina, and Hcar1-/- mice exhibited a substantially thinner choroidal vasculature during development. Notably, the angiogenic properties of lactate on the choroid were impacted by the absence of Hcar1. HCAR1-deficient mice exhibited elevated endoplasmic reticulum stress along with eukaryotic translation initiation factor 2α phosphorylation, a significant decrease in the global protein translation rate, and a lower proliferation rate of choroidal vasculature. Strikingly, inhibition of the integrated stress response using an inhibitor that reverses the effect of eukaryotic translation initiation factor 2α phosphorylation restored protein translation and rescued choroidal thinning. These results provide evidence that lactate signalling via HCAR1 is important for choroidal development/angiogenesis and highlight the importance of this receptor in establishing mature vision.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have