Abstract

A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.

Highlights

  • The release of organic osmolytes in response to cellular swelling is mediated by one or more volume-sensitive permeability pathways [1,2,3]

  • The swelling-induced release of the excitatory amino acids glutamate and aspartate and the sulfonic acid taurine is thought to be mediated by Volume Regulated Anion Channels (VRACs), which are termed in the literature as Volume Sensitive Outward Rectifying (VSOR) Cl2 channels or Volume-Sensitive

  • Swelling-activated amino acid release may mimic pathological processes that occur in ischemia and several other neuropathologies, where extensive astroglial cell swelling has been detected [7,9]

Read more

Summary

Introduction

The release of organic osmolytes in response to cellular swelling is mediated by one or more volume-sensitive permeability pathways [1,2,3]. Pathological cell swelling is likely related to tissue damage since pharmacological inhibitors that block volume-sensitive anion permeability pathway(s) suppress the pathological release of the excitatory amino acids, glutamate and aspartate, and reduce infarct size in animal models of stroke and ischemia [10,11,12,13,14,15]. These findings have led to the proposal that the swelling-activated release of excitatory amino acids may play a critical role in promoting ischemic tissue damage [7,9,16].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call