Abstract

In this article, we have study a 2D Legendre and Chebyshev wavelets collocation scheme for solving a class of linear and nonlinear weakly singular Volterra partial integro-differential equations (PIDEs). The scheme is based on wavelets collocation for PIDEs with uniquely designed matrices over the Hilbert space defined on the domain $$\left( [0, 1]\times [0, 1]\right) $$ . Using piecewise approximation associated with 2D Legendre wavelet, 2D Chebyshev wavelet and its operational matrices, the considered PIDEs will be reduced into the corresponding system of linear and nonlinear algebraic equations. The corresponding linear and nonlinear system of equations solved by collocation scheme and well-known Newton–Raphson scheme at collocation points respectively. In addition, the convergence and error analysis of the numerical scheme is provided under several mild conditions. The numerical results are correlated with the exact solutions and the execution of the proposed scheme is determined by estimating the maximum absolute errors, $$l_{2}\hbox {-}norm$$ errors and $$l_{\infty }\hbox {-}norm$$ errors. The numerical result shows that the scheme is simply applicable, efficient, powerful and very precisely at small number of basis function. The main important applications of the proposed wavelets collocation scheme is that it can be applied on linear as well as nonlinear problems and can be applied on higher order partial differential equations too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.