Abstract

AbstractIn this paper, a numerical method is presented to obtain and analyze the behavior of numerical solutions of distributed order fractional differential equations of the general form in the time domain with the Caputo fractional derivative. The suggested method is based on the Müntz–Legendre wavelet approximation. We derive a new operational vector for the Riemann–Liouville fractional integral of the Müntz–Legendre wavelets by using the Laplace transform method. Applying this operational vector and collocation method in our approach, the problem can be reduced to a system of linear and nonlinear algebraic equations. The arising system can be solved by the Newton method. Discussion on the error bound and convergence analysis for the proposed method is presented. Finally, seven test problems are considered to compare our results with other well‐known methods used for solving these problems. The results in the tabulated tables highlighted that the proposed method is an efficient mathematical tool for analyzing distributed order fractional differential equations of the general form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.