Abstract
Modern wearable electronics require scalable, flexible, and conductive electrodes with tunable properties. Abundant materials such as graphite as a conductive component and polymer as a flexible component forming a composite film (electrode) via simple synthesis technique are particularly captivating. This approach conveniently satisfies the fundamental needs of an ideal electrode yet provides a conductive platform to accommodate a secondary material for various purposes in electrochemical energy conversion and storage. Accordingly, we optimize a graphite-polymer composite film with good conductivity and flexibility to incorporate two-dimensional (2D) VSx (mixed phase predominated by V5S8) as an active material within the film. We exemplify the dual functionalities of the VSx/graphite flexible electrode as i) a photo-electrocatalyst for enhanced hydrogen evolution reaction by visible and near-infrared light irradiation (overpotential ≈500 mV at the current density of −10 mA cm−2), and ii) a conductive electrode for symmetrical solid-state supercapacitor with pseudocapacitive charge storage mechanism (areal capacitance of 123 mF cm−2 and areal capacity of 34 µAh cm−2 at the current density of 0.5 mA cm−2). Our work demonstrates the versatility of graphite films in terms of size, shape, flexibility, and scalability, with tunable physical, optical, and electrical properties by integrating other secondary materials. We combine flexible graphite film and 2D vanadium sulfide with near-infrared photoresponse and pseudocapacitive properties, as an economically feasible avenue for energy harvesting, outer space application, and wearable devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.