Abstract

The development of urbanization and industrialization leads to rapid depletion of fossil fuels. Therefore, the production of fuel from renewable resources is highly desired. Electrotechnical energy conversion and storage is a benign technique with reliable output and is eco-friendly. Developing an exceptional electrochemical catalyst with tunable properties like a huge specific surface area, porous channels, and abundant active sites is critical points. Recently, Metal-organic frameworks (MOFs) and two-dimensional (2D) transition-metal carbides/nitrides (MXenes) have been extensively investigated in the field of electrochemical energy conversion and storage. However, advances in the research on MOFs are hampered by their limited structural stability and conventionally low electrical conductivity, whereas the practical electrochemical performance of MXenes is impeded by their low porosity, inadequate redox sites, and agglomeration. Consequently, researchers have been designing MOF/MXene nanoarchitectures to overcome the limitations in electrochemical energy conversion and storage. This review explores the recent advances in MOF/MXene nanoarchitectures design strategies, tailoring their properties based on the morphologies (0D, 1D, 2D, and 3D), and broadening their future opportunities in electrochemical energy storage (batteries, supercapacitors) and catalytic energy conversion (HER, OER, and ORR). The intercalation of MOF in between the MXene layers in the nanoarchitectures functions synergistically to address the issues associated with bare MXene and MOF in the electrochemical energy storage and conversion. This review gives a clear emphasis on the general aspects of MOF/MXene nanoarchitectures, and the future research perspectives, challenges of MOF/MXene design strategies and electrochemical applications are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.