Abstract
The importance of terahertz (THz) detection lies in its ability to provide detailed information in a non-destructive manner, making it a valuable tool across various domains including spectroscopy, communication, and security. The ongoing development of THz detectors aims to enhance their sensitivity, resolution and integration into compact and portable devices such as handheld scanners or integrated communication chips. Generally, two-dimensional (2D) materials are considered potential candidates for device miniaturization but detecting THz radiation using 2D semiconductors is generally difficult due to the ultra-small photon energy. However, this challenge is being addressed by the advent of topological semimetals (TSM) with zero-bandgap characteristics. These semimetals offer low-energy excitations in proximity to the Dirac point, which is particularly important for applications requiring a broad detection range. Their distinctive band structures with linear energy-momentum dispersion near the Fermi level also lead to high electron mobility and low effective mass. The presence of topologically protected dissipationless conducting channels and self-powered response provides a basis for low-energy integration. In order to establish paradigms for semimetal-based THz detectors, this review initially offers an analytical summary of THz detection principles. Then, the review demonstrates the distinct design of devices, the excellent performance derived from the topological surface state and unique band structures in TSM. Finally, we outline the prospective avenues for on-chip integration of TSM-based THz detectors. We believe this review can promote further research on the new generation of THz detectors and facilitate advancements in THz imaging, spectroscopy, and communication systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.