Abstract
The interaction of a single-cycle terahertz electric field with the topological insulator MnBi_{2}Te_{4} triggers strongly anharmonic lattice dynamics, promoting fully coherent energy transfer between the otherwise noninteracting Raman-active E_{g} and infrared (IR)-active E_{u} phononic modes. Two-dimensional terahertz spectroscopy combined with modeling based on the classical equations of motion and symmetry analysis reveals the multistage process underlying the excitation of the Raman-active E_{g} phonon. In this nonlinear combined photophononic process, the terahertz electric field first prepares a coherent IR-active E_{u} phononic state and subsequently interacts with this state to efficiently excite the E_{g} phonon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.