Abstract

Within the framework of the macroscopic dielectric continuum model and Loudon's uniaxial crystal model, the phonon modes of a wurtzite/zinc-blende one-dimensional (1D) cylindrical nanowire (NW) are derived and studied. The analytical phonon states of phonon modes are given. It is found that there exist two types of polar phonon modes, i.e. interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes existing in 1D wurtzite/zinc-blende NWs. Via the standard procedure of field quantization, the Fröhlich electron-phonon interaction Hamiltonians are obtained. Numerical calculations of dispersive behavior of these phonon modes on a wurtzite/zinc-blende ZnO/MgO NW are performed. The frequency ranges of the IO and QC phonon modes of the ZnO/MgO NWs are analyzed and discussed. It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges. The dispersive properties of the IO and QC modes on the free wave-number kz and the azimuthal quantum number m are discussed. The analytical Hamiltonians of electron-phonon interaction obtained here are quite useful for further investigating phonon influence on optoelectronics properties of wurtzite/zinc-blende 1D NW structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call