Abstract
Two dimensional temperature and concentration distributions are important parameters for pulverized coal combustion used for power plant to understand the combustion field and develop the high efficient combustion technologies. However, it is difficult to measure two dimensional temperature and concentration in pulverized coal combustion field using conventional measurement technologies because pulverized coal combustion produces lots of dust and strong emission from its flame. This paper focused on the application of two dimensional temperature measurement method based on the combination of computed tomography and tunable diode laser absorption spectroscopy using absorption spectra of water vapor at 1388 nm and 1343 nm for each laser scanning using direct absorption spectroscopy, which show the better characteristics of spatial-temporal resolution, fast response, high sensitivity, self-calibration and optical accessibility. Accuracy of temperature measurement using tunable diode laser absorption spectroscopy was improved by applying the corrected spectroscopic database. Computed tomography reconstruction accuracy of 16 laser-paths configuration was evaluated using sum of squared difference (0.001) and zero-mean normalized cross-correlation (over 0.991), which presented the consistent temperature between assumed and reconstructed distributions. This developed computed tomography-tunable diode laser absorption spectroscopy was successfully applied to pulverized coal flame for two dimensional temperature measurement with 1 ms temporal resolution for time-series two dimensional temperature measurement in the range of 300–2500 K. The rationality was demonstrated by comparison of pulverized coal flame and Methane-Air flame temperature distributions due to the main heat release produced by methane fuel. Its applicability to pulverized coal combustion field will be benefit for optimal operation control and combustion efficiency improvement by combustion organization or new design of combustion system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.