Abstract
Two dimensional (2D) temperature and concentration distribution is related to the combustion structure, the combustor efficiency in engines, burners, gas turbines and so on. Recently, tunable diode laser absorption spectroscopy (TDLAS) as a multi-species measurement technique with high sensitivity and high response has been developed and applied to industrial process monitoring and control technologies in combustion environments. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. This paper discusses a study of the fast response 2D temperature distribution measurement method based on the combination of TDLAS and Computed Tomographic (CT) reconstruction using absorption spectra of water vapor at 1388nm. The computed tomography tunable diode laser absorption spectroscopy (CTTDLAS) method was appliedtoengine exhausts for 2D temperature distribution measurements. The measured 2D temperature showed better characteristics compared with the temperature measured by a thermocouple. Theoretical H2O absorption spectra in the 1388 nm near-infrared region calculated by the revised HITRAN database were used for temperature measurement. For accurate measurement of temperature in combustion gases, the spectroscopic databases were modified using experimentally measured spectral parameters that are not found in the databases. Accuracy of temperature measurement using TDLAS have also been discussed to demonstrate its applicability to various types of combustor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mechanical Systems Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.