Abstract

Quantum Monte Carlo simulations are used to investigate the two-dimensional superfluid properties of the hard-core boson model, which show a strong dependence on particle density and disorder. We obtain further evidence that a half-filled clean system becomes superfluid via a finite temperature Kosterlitz-Thouless transition. The relationship between low temperature superfluid density and particle density is symmetric and appears parabolic about the half filling point. Disorder appears to break the superfluid phase up into two distinct localized states, depending on the particle density. We find that these results strongly correlate with the results of several experiments on high-$T_c$ superconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call