Abstract

The presence of a small concentration of in-plane Fe dopants in La_{1.87}Sr_{0.13}Cu_{0.99}Fe_{0.01}O_{4} is known to enhance stripelike spin and charge density wave (SDW and CDW) order and suppress the superconducting T_{c}. Here, we show that it also induces highly two-dimensional superconducting correlations that have been argued to be the signatures of a new form of superconducting order, the so-called pair density wave (PDW) order. In addition, using resonant soft x-ray scattering, we find that the two-dimensional superconducting fluctuation is strongly associated with the CDW stripe. In particular, the PDW signature first appears when the correlation length of the CDW stripe grows over eight times the lattice unit (∼8a). These results provide critical conditions for the formation of the PDW order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.