Abstract
Ultrasound speckle tracking provides robust estimates of fine tissue displacements along the beam direction due to the analytic nature of echo data. We introduce a new multi-dimensional ST method (MDST) with subsample accuracy in all dimensions. The algorithm based on the gradient of the magnitude and the zero-phase crossing of 2D complex correlation of the generalized analytic signal. The generalization method utilizes the Riesz transform which is the vector extension of the Hilbert transform. Robustness of the tracking algorithm is investigated using a realistic synthetic data sequences created with (Field II) for which the bench mark displacement was known. In addition, the new MDST method is used in the estimation of the flow and surrounding tissue motion on human carotid artery in vivo. The data was collected using a linear array probe of a Sonix RP ultrasound scanner at 325 fps. The vessel diameter has been calculated from the upper and lower vessel walls displacement, and clearly shows a blood pressure wave like pattern. The results obtained show that using Riesz transform produces more robust estimation of the true displacement of the simulated model compared to previously published results. This could have significant impact on strain calculations near vessel walls.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have