Abstract

A two-dimensional (2D) fluid model is presented to investigate the spatiotemporal generation and dynamic mechanics of dielectric barrier columnar discharges in atmospheric helium. The model was examined with discharge currents measured in experiments and images taken by an intensified charge couple device camera. Based on the model, a columnar discharge was simulated for several cycles after being ignited. The discharge could be regarded as an initial unstable stage for the first three and a half cycles, then a steady state for the following cycles. In the initial stage, the discharge evolves from a uniform pattern into a columnar one. The calculated equipotential lines, 2D radial electric field, and electron density distributions at the edge of uniform discharges show the radial electric field accounts for the shrinking discharge area and the formation of discharge columns in the end. The columnar glow discharges and the Townsend discharges beyond the columns could coexist in the initial stage, and a Townsend discharge might develop into a new glow column in the next half-cycle. The radial electric field surrounding a glow discharge column has an inhibiting effect on the ionization in the peripheral area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.