Abstract

The combined influence of nitrogen impurities and radial electric field on dielectric barrier discharges in atmospheric helium is investigated using a two-dimensional (2D) fluid simulation. Discharge current waveforms, 2D electron densities, distributions of surface charge, and radial and axial components of the electric field at the electrode edge are calculated for different impurity levels varying from 0 to 30 ppm. It is observed that the discharge presents the characteristic of a column in pure helium, and it gradually becomes a relatively uniform glow discharge as the impurity level is increased to 20 ppm; for the higher impurity level of 30 ppm, the discharge adopts a concentric-ring pattern discharge. Our result shows that the radial electric field at the electrode edge is approximately 0.6–1.2 kV/cm during the discharge. This radial electric field has an effect that leads to a non-uniform discharge. After doping a low level of impurities, the Penning ionizations caused by the impurities can inhibit this effect and lead to a uniform discharge. However, for a higher impurity level (30 ppm), the effect of the radial electric field again becomes dominant, which easily leads to a non-uniform discharge. These results provide a new perspective on obtaining a uniform glow discharge when both influences of the impurity and radial electric field are taken into account.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call