Abstract
A semi-Lagrangian two-dimensional fully relativistic Vlasov code for multicomputer environments is developed to study trapped-particle dynamics in phase space induced by relativistic modulational and Raman instabilities. Attention is focused on the efficiency properties of the numerical scheme, which allows a very fine description of particle dynamics in phase space. Vlasov simulations show the appearance of coherent vortex structures as a result of the nonlinear saturation mechanism of the relativistic modulational instability. Growth rates are computed and found to be in good agreement with theoretical values obtained from the dispersion relation by Quesnel et al, [Phys. Plasmas4, 3358–3368 (1997)] and Guérin et al. [Phys. Plasmas2, 2807–2814 (1995)]. In the case of coupling between the relativistic modulational instability and two-plasmon decay, stochastic behaviour can be observed due to the competition between different plasmas waves.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have