Abstract
Optical emission spectroscopy (OES), absorption measurements, and thermal energy rate analysis were used in tandem with numerical models to characterize microwave argon plasmas. A WAVEMAT (model MPDR-3135) microwave diamond deposition system was used to generate argon plasmas at 5 Torr. Three excited state number densities (4p, 5p, and 5d) were obtained from the OES measurements, and a fourth excited state number density (4s) was obtained from the absorption measurements. Further, power absorbed in the substrate was monitored. A self-consistent two-dimensional argon model coupled with an electromagnetic field model and a 25-level two-dimensional (2D)-collisional-radiative model (CRM) was developed and validated with the experimental measurements. The 2D model provides the gas and electron temperature distributions, and the electron, ion, and 4s state number densities, which are then iteratively fed into the electromagnetic and CRM models. Both the numerically predicted thermal energy rates and excited state densities agreed, within the experimental and numerical uncertainties, with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.