Abstract

The lee-side flow over a cruciform wing–body configuration at supersonic speeds in the “” orientation up to angles of 25 deg have been simulated using the single concentrated vortex and discrete vortex model methods. The wings or strakes are of very low aspect ratio of order 0.025 with taper ratio with a length of mounted on a tangent ogive body. The simulations revealed that the single concentrated vortex model is only suitable at low angles, while the discrete vortex model can predict both the flowfield and normal force reasonably when the lee-side boundary-layer separation characteristics are modeled. The resulting secondary vortex due to the wing–body junction has been identified to significantly influence the lee-side flow topology, and its exclusion results in higher normal forces and incorrect prediction of vortex positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.