Abstract

Previously, we have presented a simple model for the interaction of a fluid vortex structure with a moving bluff body, and demonstrated the existence of a trapping mechanism related to chaotic scattering. This single point vortex model required explicit perturbation to generate chaos and the subsequent complex dynamics. Here, we present a model which attempts to introduce internal degrees-of-freedom in the vortex structure in the simplest manner, by replacing the single vortex with a like-signed pair. We show that this model exhibits chaotic trapping without the need of explicit perturbation, however, the region of parameter space for which trapping occurs is exceedingly small due to the spatially dependent form of the perturbation. We claim that this result explains some the behavior observed in Navier-Stokes simulations of the same vortex-body system, where we find close correspondence between the dynamics of an extended vorticity distribution and the single vortex model. Finally, we generalize the model to unequal strength vortex pairs, and find more complex behavior which includes "partial" capture of the weaker vortex by the body. (c) 1994 American Institute of Physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.