Abstract

The two dimensional motion of a generally non-circular non-uniform cylinder on a flat horizontal surface is investigated. Assuming that the cylinder does not slip, energy conservation is used to study the motion in general. Points of returns, and small oscillations around equilibrium configuration are studied. As examples, cylinders are studied for which the cross section is an ellipse, with the center of mass at the center of the ellipse or at a focal point, and the frequencies of small oscillations around their equilibrium configurations are found. The conditions for losing contact or sliding are also investigated. Finally, the motion is studied in more detail for the case of a nearly circular cylinder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.