Abstract

A two-dimensional-ensemble Monte Carlo program coupled with a program for solving Poisson's equation is used to perform a self-consistent simulation of a GaAs MESFET having a nonuniformly doped (ion-implanted) channel. For V gs = −0.5 V and V ds = 1 V, the simulation yields I ds = 18 mA/50 μm, g m = 755 mS/mm and f T = 230 GHz. The results are compared to those obtained from a conventional 2D device-analysis program which uses static velocity-field characteristics and an empirical expression for low-field mobility versus doping concentration. The currents, transconductance, and cutoff frequency obtained from the Monte Carlo simulation are considerably larger than those obtained from the conventional 2D analysis. This difference is explained by the fact that the conventional device analysis program fails to account for transient transport phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.