Abstract
In this paper we introduce an approach for precise orientation mapping of crystalline specimens by means of transmission electron microscopy. We show that local orientation values can be reconstructed from experimental dark-field image data acquired at different specimen tilts and multiple Bragg reflections. By using the suggested method it is also possible to determine the orientation of the tilt axis with respect to the image or diffraction pattern. The method has been implemented to automatically acquire the necessary data and then map crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a Ni-based super-alloy CMSX-4. The functionality and limitations of our method are discussed and compared to those of other techniques available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.