Abstract
AbstractTo lower CO2emissions and address the current energy crisis, one of the most promising approaches that converting the captured CO2into valuable chemicals and fuels via electrocatalysis is proposed recently. Metal‐organic frameworks (MOFs) as an emerging multifunctional material have been extensively designed for electrocatalytic reduction of CO2. In terms of chemical and structural properties, 2D MOFs have obvious superiority over 3D bulk MOFs. Specifically, the large porosity and ultrathin structure of the 2D materials contribute to exotic properties such as enhanced electrical conductivity and rapid mass transport during reactions, which are in favor of electrocatalysis. In this review, the design strategies of 2D MOFs are discussed. Then, the recent advances of MOFs and their derivative catalysts with unique 2D structures for CO2reduction are introduced. These examples are expected to provide clues to rational design strategies and synthesis of high‐performance CO2electroreduction, beyond the bulk MOFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.