Abstract

AbstractIn this paper we introduce a new method for computations of two-dimensional magnetohydrodynamic (MHD) turbulence at low magnetic Prandtl number $\mathit{Pm}= \nu / \eta $. When $\mathit{Pm}\ll 1$, the magnetic field dissipates at a scale much larger than the velocity field. The method we utilize is a novel hybrid contour–spectral method, the ‘combined Lagrangian advection method’, formally to integrate the equations with zero viscous dissipation. The method is compared with a standard pseudo-spectral method for decreasing $\mathit{Pm}$ for the problem of decaying two-dimensional MHD turbulence. The method is shown to agree well for a wide range of imposed magnetic field strengths. Examples of problems for which such a method may prove invaluable are also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call