Abstract
Iterated morphisms of the free monoid are very simple combinatorial objects which produce infinite sequences by replacing iteratively letters by words. The aim of this paper is to introduce a formalism for a notion of two-dimensional morphisms; we show that they can be iterated by using local rules, and that they generate two-dimensional patterns related to discrete approximations of irrational planes with algebraic parameters. We associate such a two-dimensional morphism with any usual Pisot unimodular one-dimensional iterated morphism over a three-letter alphabet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.