Abstract

In order to increase the output power of DFB lasers, we consider the possibility of using two-dimensional distributed feedback. Within the framework of this scheme, the feedback circuitincludes four partial wave fluxes propagating in mutually orthogonal directions, which makes it possible to provide coherent radiation from a spatially extended planar active medium characterised by large values of the Fresnel parameter. By analogy with the onedimensional distributed feedback, the wave coupling can be ensured by using both the structures with a periodically varying effectiverefractive index (static two-dimensional Bragg structures) and the gain modulation (photo-induced two-dimensional Bragg structures). Within the semiclassical approximation, the initial conditions andnonlinear dynamics of lasers with the above-described two-dimensional Bragg structures are analysed. Self-similarity conditions are found, allowing one to scale the laser parameters with increasing active region size, which is accompanied by an increase in the integratedoutput power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.