Abstract

We present an inversion method called pBasex aimed at reconstructing the original Newton sphere of expanding charged particles from its two-dimensional projection by fitting a set of basis functions with a known inverse Abel integral. The basis functions have been adapted to the polar symmetry of the photoionization process to optimize the energy and angular resolution while minimizing the CPU time and the response to the cartesian noise that could be given by the detection system. The method presented here only applies to systems with a unique axis of symmetry although it can be adapted to overcome this restriction. It has been tested on both simulated and experimental noisy images and compared to the Fourier-Hankel algorithm and the original Cartesian basis set used by [Dribinski et al.Rev. Sci. Instrum. 73, 2634 (2002)], and appears to give a better performance where odd Legendre polynomials are involved, while in the images where only even terms are present the method has been shown to be faster and simpler without compromising its accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call