Abstract

In recent years, vortex-induced vibration (VIV) has been widely employed to collect small-scale wind energy as a renewable energy source for microelectronics and wireless sensors. In this paper, a two-degree-of-freedom (2DOF) VIV-based piezoelectric energy harvester (VIVPEH) was designed, and its aerodynamic characteristics were thoroughly investigated. First, based on the traditional model theory and combined with the knowledge of vibration dynamics, the governing equations of the 2DOF VIVPEH were established. The dynamic responses, including the displacement and voltage output, were numerically simulated. Compared with the traditional 1DOF VIVPEH, the 2DOF VIVPEH proposed in this paper produced two lock-in regions for broadband wind energy harvesting. Furthermore, it was unveiled that the first- and second-order resonances were induced in the first and lock-in regions, respectively. Subsequently, a parametric study was conducted to investigate the influences of the circuit and mechanical parameters on the energy harvesting performance of the 2DOF VIVPEH. It was found that when the 2DOF VIVPEH was induced to vibrate in different lock-in regions, its optimal resistance became different. Moreover, by varying the masses and stiffnesses of the primary and secondary DOFs, we could adjust the lock-in regions in terms of their bandwidths, locations, and amplitudes, which provides a possibility for further customization and optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.