Abstract

We investigate the potential of using a piezoelectric energy harvester to concurrently harness energy from base excitations and vortex-induced vibrations. The harvester consists of a multilayered piezoelectric cantilever beam with a circular cylinder tip mass attached to its free end which is placed in a uniform air flow and subjected to direct harmonic excitations. We model the fluctuating lift coefficient by a van der Pol wake oscillator. The Euler–Lagrange principle and the Galerkin procedure are used to derive a nonlinear distributed-parameter model for a harvester under a combination of vibratory base excitations and vortex-induced vibrations. Linear and nonlinear analyses are performed to investigate the effects of the electrical load resistance, wind speed, and base acceleration on the coupled frequency, electromechanical damping, and performance of the harvester. It is demonstrated that, when the wind speed is in the pre- or post-synchronization regions, its associated electromechanical damping is increased and hence a reduction in the harvested power is obtained. When the wind speed is in the lock-in or synchronization region, the results show that there is a significant improvement in the level of the harvested power which can attain 150 % compared to using two separate harvesters. The results also show that an increase of the base acceleration results in a reduction in the vortex-induced vibrations effects, an increase of the difference between the resonant excitation frequency and the pull-out frequency, and a significant effects associated with the quenching phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call