Abstract
During thermal decomposition of azobisisobutyronitrile (AIBN), the endothermic process of phase transition disturbed exothermic decomposition, which brought deformation in its thermal graphs. Therefore, exact kinetic parameters of the decomposition could not be obtained by the existing kinetics analytic models, and the accurate enthalpy data of the decomposition and phase transition were not available. Two methods, i.e., a solvent method and a mathematical method, were introduced in this paper to resolve the coupling phenomenon. In the former method, AIBN was dissolved into aniline to eliminate the endothermic process and obtain curves of the liquid-state decomposition. In the latter method, MATLAB software was employed to get the “pure” exothermic decomposition curve without the influence of phase transition by fitting coupling curves within the section after the transition point and extrapolating to the initial stage of decomposition. Moreover, the kinetic parameters of the “pure” exothermic decomposition of AIBN obtained by the mathematical fitting agreed with the results from the solvent method, verifying the accuracy of the decoupling. The research is of great significance for comprehending the exact characteristics of thermal behaviors and safety parameters of AIBN. It also provides a great help to determine the safe operating temperature and alarm temperature for processes in industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.