Abstract

Abstract. For almost two decades, the airborne Fast In-situ Stratospheric Hygrometer (FISH) has stood for accurate and precise measurements of total water mixing ratios (WMR, gas phase + evaporated ice) in the upper troposphere and lower stratosphere (UT/LS). Here, we present a comprehensive review of the measurement technique (Lyman-α photofragment fluorescence), calibration procedure, accuracy and reliability of FISH. Crucial for FISH measurement quality is the regular calibration to a water vapor reference, namely the commercial frost-point hygrometer DP30. In the frame of this work this frost-point hygrometer is compared to German and British traceable metrological water standards and its accuracy is found to be 2–4 %. Overall, in the range from 4 to 1000 ppmv, the total accuracy of FISH was found to be 6–8 %, as stated in previous publications. For lower mixing ratios down to 1 ppmv, the uncertainty reaches a lower limit of 0.3 ppmv. For specific, non-atmospheric conditions, as set in experiments at the AIDA chamber – namely mixing ratios below 10 and above 100 ppmv in combination with high- and low-pressure conditions – the need to apply a modified FISH calibration evaluation has been identified. The new evaluation improves the agreement of FISH with other hygrometers to ± 10 % accuracy in the respective mixing ratio ranges. Furthermore, a quality check procedure for high total water measurements in cirrus clouds at high pressures (400–500 hPa) is introduced. The performance of FISH in the field is assessed by reviewing intercomparisons of FISH water vapor data with other in situ and remote sensing hygrometers over the last two decades. We find that the agreement of FISH with the other hygrometers has improved over that time span from overall up to ± 30 % or more to about ± 5–20 % @ < 10 ppmv and to ± 0–15 % @ > 10 ppmv. As presented here, the robust and continuous calibration and operation procedures of the FISH instrument over the last two decades establish the position of FISH as one of the core instruments for in situ observations of water vapor in the UT/LS.

Highlights

  • Water vapor in the upper troposphere and lower stratosphere (UT/LS) plays an important role in the climate of the Earth

  • Since 1996, the Lyman-α fluorescence hygrometer Fast Insitu Stratospheric Hygrometer (FISH) has been deployed on balloons and multiple aircraft platforms, as well as at the AIDA chamber during numerous campaigns

  • Affords a unique perspective from which to evaluate the performance of FISH

Read more

Summary

Introduction

Water vapor in the upper troposphere and lower stratosphere (UT/LS) plays an important role in the climate of the Earth. Isentropic transport of moist air from the upper tropical troposphere to the lower stratosphere (LS) affects the radiative budget in two ways It produces an increase in water vapor in the dry LS and indirectly it impacts thin cirrus formation near the tropopause (Dessler et al, 2009; Spang et al, 2014). Rosenlof et al (2001) and Kley et al (2000) combined water vapor measurements from different instruments to derive long-term changes of stratospheric water. They identified systematic differences between individual hygrometers on the order of 20 %, which was partially accounted for by the relative trend analysis of that study. The consistency of the FISH measurements with other in situ and remote sensing hygrometers is reported

FISH-technique – a brief description
Mirror MgF2 window
FISH calibration procedure – an update
FISH calibration
Extended FISH calibration evaluation
Data quality of FISH measurements – a survey
Accuracy of the calibration reference DP30
Reproducibility of FISH calibration
FISH uncertainty
Quality check procedure for high WVMRs
FISH intercomparison measurements – a summary
In-flight performance and aircraft intercomparisons
Laboratory intercomparisons
Satellite intercomparisons
Findings
Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call