Abstract
AbstractUnravelling the molecular basis of drought tolerance will provide novel opportunities for improving crop yield under water‐limited conditions. The present study was conducted to identify quantitative trait loci (QTLs) controlling anthesis–silking interval (ASI), ear setting percentage (ESP) and grain yield (GY). The mapping population included 234 F2 plants derived from the cross X178 (drought tolerant) × B73 (drought susceptible). The corresponding F2:3 progenies, along with their parents, were evaluated for the above‐mentioned traits under both well‐watered and water‐stressed field conditions in three different trials carried out in central and southern China. Interval mapping and composite interval mapping identified 45 and 65 QTLs for the investigated traits, respectively. Two QTL clusters influencing ASI and ESP on chromosomes 1 (bin 1.03) and 9 (bins 9.03–9.05) were identified in more than two environments, showing sizeable additive effects and contribution to phenotypic variance; these two QTL clusters influenced GY only in one environment. No significant interaction was detected between the two genomic regions. A comparative analysis of these two QTL clusters with the QTLs controlling maize drought tolerance previously described in three mapping populations confirmed and extended their relevance for marker‐assisted breeding to improve maize production under water‐limited conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have