Abstract

Two monoclinic (P21/c; Z′ = 1) polymorphs, α (from methanol) and β (from ethanol, n-propanol and iso-propanol), of a bioactive pyrazolo[3,4-d]pyrimidine derivative have been isolated and characterised by X-ray crystallography as well as by a range of computational chemistry techniques. The different conformations observed for the molecules in the crystals are due to the dictates of molecular packing as revealed by geometry-optimisation calculations. The crucial difference in the molecular packing pertains to the formation of phenylamino-N–H···N(pyrazolyl) hydrogen bonding within supramolecular chains with either helical (α-form; 21-screw symmetry) or zigzag (β-form; glide symmetry). As a consequence, the molecular packing is quite distinct in the polymorphs. Lattice energy calculations indicate the β-form is more stable by 11 kJ/mol than the α-form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.