Abstract

BackgroundDerivatives of fulgides have been shown to have interesting photochromic properties. We have synthesised a number of such derivatives and have found, in some cases, that crystals can be made to change colour on crushing, a phenomenon we have termed “tribochromism”. We have studied a number of derivatives by X-ray crystallography, to see if the colour is linked to molecular structure or crystal packing, or both, and our structural results have been supported by calculation of molecular and lattice energies.ResultsA number of 5-dicyanomethylene-4-diphenylmethylene-3-disubstitutedmethylene-tetrahydrofuran-2-one compounds have been prepared and structurally characterised. The compounds are obtained as yellow or dark red crystals, or, in one case, both. In two cases where yellow crystals were obtained, we found that crushing the crystals gave a deep red powder. Structure determinations, including those of the one compound which gave both coloured forms, depending on crystallisation conditions, showed that the yellow crystals contained molecules in which the structure comprised a folded conformation at the diphenylmethylene site, whilst the red crystals contained molecules in a twisted conformation at this site. Lattice energy and molecular conformation energies were calculated for all molecules, and showed that the conformational energy of the molecule in structure IIIa (yellow) is marginally higher, and the conformation thus less stable, than that of the molecule in structure IIIb (red). However, the van der Waals energy for crystal structure IIIa, is slightly stronger than that of structure IIIb – which may be viewed as a hint of a metastable packing preference for IIIa, overcome by the contribution of a more stabilising Coulomb energy to the overall more favourable lattice energy of structure IIIb.ConclusionsOur studies have shown that the crystal colour is correlated with one of two molecular conformations which are different in energy, but that the less stable conformation can be stabilised by its host crystal lattice.Graphical abstractGraphical representation of the structural and colour change in the tribochromic compound (III).Electronic supplementary materialThe online version of this article (doi:10.1186/s13065-014-0070-3) contains supplementary material, which is available to authorized users.

Highlights

  • Derivatives of fulgides have been shown to have interesting photochromic properties

  • By crushing the crystal, a dark red powder was produced which did not revert to the yellow form unless the red powder was re-crystallised from 3:7 ethyl acetate and petroleum

  • In the case of the yellow form the molecule has a folded conformation which is characterised mainly by an envelope fold of the tetrahydrofuran-2-one ring, and a very slight pyramidalization at the carbons at each end of the diphenylmethylene double bond; in the case of the red crystals, the molecule is twisted about the equivalent methylene component

Read more

Summary

Results

A number of 5-dicyanomethylene-4-diphenylmethylene-3-disubstitutedmethylene-tetrahydrofuran-2-one compounds have been prepared and structurally characterised. In two cases where yellow crystals were obtained, we found that crushing the crystals gave a deep red powder Structure determinations, including those of the one compound which gave both coloured forms, depending on crystallisation conditions, showed that the yellow crystals contained molecules in which the structure comprised a folded conformation at the diphenylmethylene site, whilst the red crystals contained molecules in a twisted conformation at this site. The van der Waals energy for crystal structure IIIa, is slightly stronger than that of structure IIIb – which may be viewed as a hint of a metastable packing preference for IIIa, overcome by the contribution of a more stabilising Coulomb energy to the overall more favourable lattice energy of structure IIIb

Conclusions
Background
Results and discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.