Abstract
The northern Tibetan Plateau has been subject to recent warming far above the global average. With few instrumental climate records available for this region before the 1950s, paleoclimatic reconstructions must be used to understand annual-to-centennial-scale climate variations and local climate response to large-scale forcing mechanisms. We developed a maximum latewood density chronology of Qinghai spruce (Picea crassifolia) from the southern slope of the Qilian Mountains, northern Tibetan Plateau. Based on the chronology, we reconstructed August–September temperature for 1780–2008. The temperature reconstruction model accounts for 39.7% of instrumental temperature variance from 1957 to 2008, successfully capturing the most recent warming. Superposed epoch analysis indicated a volcanic forcing for temperature, resulting in pulses of cooler conditions that can persist for 2–4 years. Tree-ring data indicated that warm-dry and cold-wet climate combinations mainly occurred in northern Tibetan Plateau before CE 1900, and revealed a clear wetting and warming trend since the 1980s. Our study provides long-term perspective on recent climate change in northern Tibetan Plateau to guide expectations of future climate variability and aid sustainable development, and provides scenarios for climate change adaptation and inputs for climate models representing a broader range of conditions than those of historical climate records.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.