Abstract
Induction of CYP3A genes by the ligand-activated pregnane-X-receptor (PXR) involves the interaction of other as yet unidentified liver transcription factors. Here we show that the CYP3A1 promoter contains two active sites controlled by the CCAAT/enhancer-binding protein alpha (C/EBPalpha), previously shown to regulate a number of liver stress response genes. We have identified two functional C/EBP binding sites at the CYP3A1 promoter that confer luciferase activity to C/EBPalpha cotransfected CHO cells. When inserted upstream of a thymidine kinase promoter, oligonucleotides corresponding to these elements (-350/-311 and -628/-608), increase reporter gene expression when cotransfected with a C/EBPalpha expression vector. Point mutations in the most conserved nucleotides in either element prevent binding of C/EBPalpha and abolish transactivation of the CYP3A1 promoter. Moreover, we demonstrate that C/EBPalpha accumulates in the rat liver nuclei in response to dexamethasone, and that under these conditions C/EBPalpha binds to the CYP3A1 promoter elements. Our results suggest a correlation between transcription of C/EBPalpha, nuclear protein function and induction of CYP3A1 by dexamethasone in the liver. They also support the notion that C/EBPalpha participates in the up-regulation of the CYP3A1 gene in response to synthetic glucocorticoids.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have