Abstract
Two breakdown mechanisms are observed in magnetic tunnel junctions having an ultrathin alumina barrier. The two breakdown mechanisms manifest themselves differently when considering large ensembles of nominally identical devices under different stress conditions. The results suggest that one type of breakdown occurs because of the intrinsic breakdown of a well-formed oxide barrier that can be described by the E model of dielectric breakdown. The other is an extrinsic breakdown related to defects in the barrier rather than the failure of the oxide integrity. The characteristic of extrinsic breakdown suggests that a pre-existing pinhole in the barriers grows in area by means of dissipative (Joule) heating and/or an electric field across the pinhole circumference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.