Abstract

A mode III electrically conductive crack between two different piezoelectric materials under the action of anti-plane mechanical and in-plane electric loadings is analyzed. The strip dielectric breakdown (DB) model, which is free from the electric field singularity, is developed for this crack. According to this model, the electric field along a DB-zone situated in continuation of a crack is assumed to be equal to the electric breakdown strength. The DB-zone lengths are found from the condition of a finite electric field at the end point of such a zone. Using special representations of field variables via sectionally analytic functions, an inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved analytically. Explicit expressions for the shear stress, the electric field and the crack faces’ sliding displacement jump are derived. The stress intensity factor is determined as well. The dependencies of the mentioned values on the magnitude of the external electromechanical loading are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.