Abstract

We propose a method of two-beam spin noise spectroscopy to test the spin transport at equilibrium via analysis of correlations between time-shifted spin fluctuations at different space locations. This method allows one to determine the strength of spin-orbit interaction and spin relaxation time and separate spin noise of conducting electrons from the background noise of localized electrons. We formulate a theory of two-beam spin noise spectroscopy in semiconductor wires with Bychkov-Rashba spin-orbit interaction taking into account several possible spin relaxation channels and finite size of laser beams. Our theory predicts a peak shift with respect to the Larmor frequency to higher or lower frequencies depending on the strength of spin orbit interaction and distance between the beams. The two-beam spin noise spectroscopy could find applications in experimental studies of semiconductors, emergent materials, and many other systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.