Abstract

We investigate spin relaxation in rippled graphene where curvature induces a Zeeman-like spin-orbit coupling with opposite effective magnetic fields along the graphene plane in K and K′ valleys. The joint effect of this Zeeman-like spin-orbit coupling and the intervalley electron-optical phonon scattering opens a spin relaxation channel, which manifests itself in low-mobility samples with the electron mean free path being smaller than the ripple size. Due to this spin relaxation channel, with the increase of temperature, the relaxation time for spins perpendicular to the effective magnetic field first decreases and then increases, with a minimum of several hundred picoseconds around room temperature. However, the spin relaxation along the effective magnetic field is determined by the curvature-induced Rashba-type spin-orbit coupling, leading to a temperature-insensitive spin relaxation time of the order of microseconds. Therefore, the in-plane spin relaxation in low-mobility rippled graphene is anisotropic. Nevertheless, in the presence of a small perpendicular magnetic field, as usually applied in the Hanle spin precession measurement, the anisotropy of spin relaxation is strongly suppressed. The spin relaxation channel revealed in this work contributes to spin relaxation around room temperature in rippled graphene with low mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.