Abstract

Cobalt films were grown by molecular beam epitaxy on CaF2 buffer layers on silicon. Due to unique properties of CaF2/Si(100) interface, the surface of CaF2 has grooves along [110] direction. Cobalt grown on it has in-plane uniaxial magnetic anisotropy with easy axis along the grooves. The dependence of remanence magnetisation and coercivity on azimuth angle (between the grooves and field) follows single domain model in the range from 0 to 80 degrees. For hysteresis loops of both parallel and perpendicular components of magnetisation, quantitative agreement was achieved within the model of coherent rotation with certain distribution of anisotropy energy over regions of the sample. Between 80 degrees and 90 degrees, the film splits into multiple domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.