Abstract
This paper concentrates on cost sharing situations which arise when delayed joint projects involve joint delay costs. The problem here is to determine “fair” shares for each of the agents who contribute to the delay of the project such that the total delay cost is cleared. We focus on the evaluation of the responsibility of each agent in delaying the project based on the activity graph representation of the project and then on solving the important problem of the delay cost sharing among the agents involved. Two approaches, both rooted in cooperative game theory methods are presented as possible solutions. In the first approach delay cost sharing rules are introduced which are based on the delay of the project and on the individual delays of the agents who perform activities. This approach is inspired by the bankruptcy and taxation literature and leads to five rules: the (truncated) proportional rule, the (truncated) constrained equal reduction rule and the constrained equal contribution rule. By introducing two coalitional games related to delay cost sharing problems, which we call the pessimistic delay game and the optimistic delay game, also game theoretical solutions as the Shapley value, the nucleolus and the τ-value generate delay cost sharing rules. In the second approach the delays of the relevant paths in the activity graph together with the delay of the project play a role. A two-stage solution is proposed. The first stage can be seen as a game between paths, where the delay cost of the project has to be allocated to the paths. Here serial cost sharing methods play a role. In the second stage the allocated costs of each path are divided proportionally to the individual delays among the activities in the path.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have