Abstract
Abstract The torsional static and dynamic behaviors of circular nanosolids such as nanoshafts, nanorods and nanotubes are established based on a new nonlocal elastic stress field theory. Based on a new expression for strain energy with a nonlocal nanoscale parameter, new higher-order governing equations and the corresponding boundary conditions are first derived here via the variational principle because the classical equilibrium conditions and/or equations of motion can-not be directly applied to nonlocal nanostructures even if the stress and moment quantities are replaced by the corresponding nonlocal quantities. The static twist and torsional vibration of cir-cular, nonlocal nanosolids are solved and discussed in detail. A comparison of the conventional and new nonlocal models is also presented for a fully fixed nanosolid, where a lower-order governing equation and reduced stiffness are found in the conventional model while the new model reports opposite solutions. Analytical solutions and numerical examples based on the new nonlocal stress theory demonstrate that nonlocal stress enhances stiffness of nanosolids, i.e. the angular displace-ment decreases with the increasing nonlocal nanoscale while the natural frequency increases with the increasing nonlocal nanoscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.