Abstract

This paper has successfully addressed three critical but overlooked issues in nonlocal elastic stress field theory for nanobeams: (i) why does the presence of increasing nonlocal effects induce reduced nanostructural stiffness in many, but not consistently for all, cases of study, i.e., increasing static deflection, decreasing natural frequency and decreasing buckling load, although physical intuition according to the nonlocal elasticity field theory first established by Eringen tells otherwise? (ii) the intriguing conclusion that nanoscale effects are missing in the solutions in many exemplary cases of study, e.g., bending deflection of a cantilever nanobeam with a point load at its tip; and (iii) the non-existence of additional higher-order boundary conditions for a higher-order governing differential equation. Applying the nonlocal elasticity field theory in nanomechanics and an exact variational principal approach, we derive the new equilibrium conditions, domain governing differential equation and boundary conditions for bending of nanobeams. These equations and conditions involve essential higher-order differential terms which are opposite in sign with respect to the previously studies in the statics and dynamics of nonlocal nano-structures. The difference in higher-order terms results in reverse trends of nanoscale effects with respect to the conclusion of this paper. Effectively, this paper reports new equilibrium conditions, governing differential equation and boundary conditions and the true basic static responses for bending of nanobeams. It is also concluded that the widely accepted equilibrium conditions of nonlocal nanostructures are in fact not in equilibrium, but they can be made perfect should the nonlocal bending moment be replaced by an effective nonlocal bending moment. These conclusions are substantiated, in a general sense, by other approaches in nanostructural models such as strain gradient theory, modified couple stress models and experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.