Abstract
Let $L/F$ be a quadratic extension of totally real number fields. For any prime $p$ unramified in $L$, we construct a $p$-adic $L$-function interpolating the central values of the twisted triple product $L$-functions attached to a $p$-nearly ordinary family of unitary cuspidal automorphic representations of $\text{Res}_{L\times F/F}(\text{GL}_{2})$. Furthermore, when $L/\mathbb{Q}$ is a real quadratic number field and $p$ is a split prime, we prove a $p$-adic Gross–Zagier formula relating the values of the $p$-adic $L$-function outside the range of interpolation to the syntomic Abel–Jacobi image of generalized Hirzebruch–Zagier cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Institute of Mathematics of Jussieu
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.