Abstract

Most cryptographic key exchange protocols make use of the presumed difficulty of solving the discrete logarithm problem (DLP) in a certain finite group as the basis of their security. Recently, real quadratic number fields have been proposed for use in the development of such protocols. Breaking such schemes is known to be at least as difficult a problem as integer factorization; furthermore, these are the first discrete logarithm based systems to utilize a structure which is not a group, specifically the collection of reduced ideals which belong to the principal class of the number field. For this structure the DLP is essentially that of determining a generator of a given principal ideal. Unfortunately, there are a few implementation-related disadvantages to these schemes, such as the need for high precision floating point arithmetic and an ambiguity problem that requires a short, second round of communication. In this paper we describe work that has led to the resolution of some of these difficulties. Furthermore, we discuss the security of the system, concentrating on the most recent techniques for solving the DLP in a real quadratic number field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.