Abstract
We study an analogue of the analytic torsion for elliptic complexes that are graded by $\mathbb{Z}_2$, orignally constructed by Mathai and Wu. Motivated by topological T-duality, Bouwknegt an Mathai study the complex of forms on an odd-dimensional manifold equipped with with the twisted differential $d_H = d+H$, where $H$ is a closed odd-dimensional form. We show that the Ray-Singer metric on this twisted determinant is equal to the untwisted Ray-Singer metric when the determinant lines are identified using a canonical isomorphism. We also study another analytical invariant of the twisted differential, the derived Euler characteristic $\chi'(d_H)$, as defined by Bismut and Zhang.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.