Abstract
We define analytic torsion of Z_2-graded elliptic complexes as an element in the graded determinant line of the cohomology of the complex, generalizing most of the variants of Ray-Singer analytic torsion in the literature. It applies to a myriad of new examples, including flat superconnection complexes, twisted analytic and twisted holomorphic torsions, etc. The definition uses pseudo-differential operators and residue traces. We also study properties of analytic torsion for Z_2-graded elliptic complexes, including the behavior under variation of the metric. For compact odd dimensional manifolds, the analytic torsion is independent of the metric, whereas for even dimensional manifolds, a relative version of the analytic torsion is independent of the metric. Finally, the relation to topological field theories is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.